↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
Q_IN_GG(X, Y) → U1_GG(X, Y, e_in_gg(X, Y))
Q_IN_GG(X, Y) → E_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
P_IN_GG(X, Y) → U5_GG(X, Y, e_in_gg(X, Y))
P_IN_GG(X, Y) → E_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
R_IN_GG(X, Y) → U8_GG(X, Y, e_in_gg(X, Y))
R_IN_GG(X, Y) → E_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → U4_GG(X, Y, p_in_gg(X, f(Y)))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
U9_GG(X, Y, q_out_gg(X, Y)) → U10_GG(X, Y, r_in_gg(X, Y))
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
R_IN_GG(f(X), f(X)) → U11_GG(X, t_in_gg(f(X), f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
T_IN_GG(X, Y) → U12_GG(X, Y, e_in_gg(X, Y))
T_IN_GG(X, Y) → E_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → U14_GG(X, Y, t_in_gg(X, Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → U7_GG(X, Y, p_in_gg(X, Y))
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U2_GG(X, p_out_gg(X, f(f(X)))) → U3_GG(X, q_in_gg(X, f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
Q_IN_GG(X, Y) → U1_GG(X, Y, e_in_gg(X, Y))
Q_IN_GG(X, Y) → E_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
P_IN_GG(X, Y) → U5_GG(X, Y, e_in_gg(X, Y))
P_IN_GG(X, Y) → E_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
R_IN_GG(X, Y) → U8_GG(X, Y, e_in_gg(X, Y))
R_IN_GG(X, Y) → E_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → U4_GG(X, Y, p_in_gg(X, f(Y)))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
U9_GG(X, Y, q_out_gg(X, Y)) → U10_GG(X, Y, r_in_gg(X, Y))
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
R_IN_GG(f(X), f(X)) → U11_GG(X, t_in_gg(f(X), f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
T_IN_GG(X, Y) → U12_GG(X, Y, e_in_gg(X, Y))
T_IN_GG(X, Y) → E_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → U14_GG(X, Y, t_in_gg(X, Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → U7_GG(X, Y, p_in_gg(X, Y))
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U2_GG(X, p_out_gg(X, f(f(X)))) → U3_GG(X, q_in_gg(X, f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PrologToPiTRSProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U13_GG(X, Y, q_out_gg) → T_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg
U1_gg(e_out_gg) → q_out_gg
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(e_in_gg(X, Y))
U5_gg(e_out_gg) → p_out_gg
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(e_in_gg(X, Y))
U8_gg(e_out_gg) → r_out_gg
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(p_in_gg(X, f(Y)))
U4_gg(p_out_gg) → q_out_gg
U9_gg(X, Y, q_out_gg) → U10_gg(r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(e_in_gg(X, Y))
U12_gg(e_out_gg) → t_out_gg
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg) → U14_gg(t_in_gg(X, Y))
U14_gg(t_out_gg) → t_out_gg
U11_gg(t_out_gg) → r_out_gg
U10_gg(r_out_gg) → r_out_gg
U6_gg(X, Y, r_out_gg) → U7_gg(p_in_gg(X, Y))
U7_gg(p_out_gg) → p_out_gg
U2_gg(X, p_out_gg) → U3_gg(q_in_gg(X, f(X)))
U3_gg(q_out_gg) → q_out_gg
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0)
p_in_gg(x0, x1)
U5_gg(x0)
r_in_gg(x0, x1)
U8_gg(x0)
U4_gg(x0)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0)
U13_gg(x0, x1, x2)
U14_gg(x0)
U11_gg(x0)
U10_gg(x0)
U6_gg(x0, x1, x2)
U7_gg(x0)
U2_gg(x0, x1)
U3_gg(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
Used ordering: Polynomial interpretation [25]:
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U13_GG(X, Y, q_out_gg) → T_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
POL(P_IN_GG(x1, x2)) = x1
POL(Q_IN_GG(x1, x2)) = x1
POL(R_IN_GG(x1, x2)) = x1
POL(T_IN_GG(x1, x2)) = x1
POL(U10_gg(x1)) = 0
POL(U11_gg(x1)) = 0
POL(U12_gg(x1)) = 0
POL(U13_GG(x1, x2, x3)) = x1
POL(U13_gg(x1, x2, x3)) = 0
POL(U14_gg(x1)) = 0
POL(U1_gg(x1)) = 0
POL(U2_GG(x1, x2)) = x1
POL(U2_gg(x1, x2)) = 0
POL(U3_gg(x1)) = 0
POL(U4_gg(x1)) = 0
POL(U5_gg(x1)) = 0
POL(U6_GG(x1, x2, x3)) = x1
POL(U6_gg(x1, x2, x3)) = 0
POL(U7_gg(x1)) = 0
POL(U8_gg(x1)) = 0
POL(U9_GG(x1, x2, x3)) = x1
POL(U9_gg(x1, x2, x3)) = 0
POL(a) = 0
POL(b) = 0
POL(e_in_gg(x1, x2)) = 0
POL(e_out_gg) = 0
POL(f(x1)) = 1 + x1
POL(p_in_gg(x1, x2)) = 0
POL(p_out_gg) = 0
POL(q_in_gg(x1, x2)) = 0
POL(q_out_gg) = 0
POL(r_in_gg(x1, x2)) = x1
POL(r_out_gg) = 0
POL(t_in_gg(x1, x2)) = 0
POL(t_out_gg) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U13_GG(X, Y, q_out_gg) → T_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg
U1_gg(e_out_gg) → q_out_gg
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(e_in_gg(X, Y))
U5_gg(e_out_gg) → p_out_gg
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(e_in_gg(X, Y))
U8_gg(e_out_gg) → r_out_gg
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(p_in_gg(X, f(Y)))
U4_gg(p_out_gg) → q_out_gg
U9_gg(X, Y, q_out_gg) → U10_gg(r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(e_in_gg(X, Y))
U12_gg(e_out_gg) → t_out_gg
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg) → U14_gg(t_in_gg(X, Y))
U14_gg(t_out_gg) → t_out_gg
U11_gg(t_out_gg) → r_out_gg
U10_gg(r_out_gg) → r_out_gg
U6_gg(X, Y, r_out_gg) → U7_gg(p_in_gg(X, Y))
U7_gg(p_out_gg) → p_out_gg
U2_gg(X, p_out_gg) → U3_gg(q_in_gg(X, f(X)))
U3_gg(q_out_gg) → q_out_gg
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0)
p_in_gg(x0, x1)
U5_gg(x0)
r_in_gg(x0, x1)
U8_gg(x0)
U4_gg(x0)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0)
U13_gg(x0, x1, x2)
U14_gg(x0)
U11_gg(x0)
U10_gg(x0)
U6_gg(x0, x1, x2)
U7_gg(x0)
U2_gg(x0, x1)
U3_gg(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ PrologToPiTRSProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg
U1_gg(e_out_gg) → q_out_gg
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(e_in_gg(X, Y))
U5_gg(e_out_gg) → p_out_gg
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(e_in_gg(X, Y))
U8_gg(e_out_gg) → r_out_gg
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(p_in_gg(X, f(Y)))
U4_gg(p_out_gg) → q_out_gg
U9_gg(X, Y, q_out_gg) → U10_gg(r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(e_in_gg(X, Y))
U12_gg(e_out_gg) → t_out_gg
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg) → U14_gg(t_in_gg(X, Y))
U14_gg(t_out_gg) → t_out_gg
U11_gg(t_out_gg) → r_out_gg
U10_gg(r_out_gg) → r_out_gg
U6_gg(X, Y, r_out_gg) → U7_gg(p_in_gg(X, Y))
U7_gg(p_out_gg) → p_out_gg
U2_gg(X, p_out_gg) → U3_gg(q_in_gg(X, f(X)))
U3_gg(q_out_gg) → q_out_gg
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0)
p_in_gg(x0, x1)
U5_gg(x0)
r_in_gg(x0, x1)
U8_gg(x0)
U4_gg(x0)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0)
U13_gg(x0, x1, x2)
U14_gg(x0)
U11_gg(x0)
U10_gg(x0)
U6_gg(x0, x1, x2)
U7_gg(x0)
U2_gg(x0, x1)
U3_gg(x0)
T_IN_GG(f(z0), f(z0)) → Q_IN_GG(f(z0), f(z0))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ PrologToPiTRSProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
T_IN_GG(f(z0), f(z0)) → Q_IN_GG(f(z0), f(z0))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg
U1_gg(e_out_gg) → q_out_gg
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(e_in_gg(X, Y))
U5_gg(e_out_gg) → p_out_gg
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(e_in_gg(X, Y))
U8_gg(e_out_gg) → r_out_gg
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(p_in_gg(X, f(Y)))
U4_gg(p_out_gg) → q_out_gg
U9_gg(X, Y, q_out_gg) → U10_gg(r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(e_in_gg(X, Y))
U12_gg(e_out_gg) → t_out_gg
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg) → U14_gg(t_in_gg(X, Y))
U14_gg(t_out_gg) → t_out_gg
U11_gg(t_out_gg) → r_out_gg
U10_gg(r_out_gg) → r_out_gg
U6_gg(X, Y, r_out_gg) → U7_gg(p_in_gg(X, Y))
U7_gg(p_out_gg) → p_out_gg
U2_gg(X, p_out_gg) → U3_gg(q_in_gg(X, f(X)))
U3_gg(q_out_gg) → q_out_gg
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0)
p_in_gg(x0, x1)
U5_gg(x0)
r_in_gg(x0, x1)
U8_gg(x0)
U4_gg(x0)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0)
U13_gg(x0, x1, x2)
U14_gg(x0)
U11_gg(x0)
U10_gg(x0)
U6_gg(x0, x1, x2)
U7_gg(x0)
U2_gg(x0, x1)
U3_gg(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
Used ordering: Polynomial interpretation [25]:
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
T_IN_GG(f(z0), f(z0)) → Q_IN_GG(f(z0), f(z0))
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
POL(P_IN_GG(x1, x2)) = x2
POL(Q_IN_GG(x1, x2)) = x2
POL(R_IN_GG(x1, x2)) = x2
POL(T_IN_GG(x1, x2)) = x2
POL(U10_gg(x1)) = 0
POL(U11_gg(x1)) = 0
POL(U12_gg(x1)) = 0
POL(U13_gg(x1, x2, x3)) = 0
POL(U14_gg(x1)) = 0
POL(U1_gg(x1)) = 0
POL(U2_GG(x1, x2)) = 1 + x1
POL(U2_gg(x1, x2)) = 0
POL(U3_gg(x1)) = 0
POL(U4_gg(x1)) = 0
POL(U5_gg(x1)) = 0
POL(U6_GG(x1, x2, x3)) = x2
POL(U6_gg(x1, x2, x3)) = 0
POL(U7_gg(x1)) = 0
POL(U8_gg(x1)) = 0
POL(U9_GG(x1, x2, x3)) = x2
POL(U9_gg(x1, x2, x3)) = 0
POL(a) = 0
POL(b) = 0
POL(e_in_gg(x1, x2)) = 0
POL(e_out_gg) = 0
POL(f(x1)) = 1 + x1
POL(p_in_gg(x1, x2)) = 0
POL(p_out_gg) = 0
POL(q_in_gg(x1, x2)) = 0
POL(q_out_gg) = 0
POL(r_in_gg(x1, x2)) = 0
POL(r_out_gg) = 0
POL(t_in_gg(x1, x2)) = 0
POL(t_out_gg) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
U9_GG(X, Y, q_out_gg) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U6_GG(X, Y, r_out_gg) → P_IN_GG(X, Y)
T_IN_GG(f(z0), f(z0)) → Q_IN_GG(f(z0), f(z0))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U2_GG(X, p_out_gg) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg
U1_gg(e_out_gg) → q_out_gg
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(e_in_gg(X, Y))
U5_gg(e_out_gg) → p_out_gg
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(e_in_gg(X, Y))
U8_gg(e_out_gg) → r_out_gg
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(p_in_gg(X, f(Y)))
U4_gg(p_out_gg) → q_out_gg
U9_gg(X, Y, q_out_gg) → U10_gg(r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(e_in_gg(X, Y))
U12_gg(e_out_gg) → t_out_gg
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg) → U14_gg(t_in_gg(X, Y))
U14_gg(t_out_gg) → t_out_gg
U11_gg(t_out_gg) → r_out_gg
U10_gg(r_out_gg) → r_out_gg
U6_gg(X, Y, r_out_gg) → U7_gg(p_in_gg(X, Y))
U7_gg(p_out_gg) → p_out_gg
U2_gg(X, p_out_gg) → U3_gg(q_in_gg(X, f(X)))
U3_gg(q_out_gg) → q_out_gg
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0)
p_in_gg(x0, x1)
U5_gg(x0)
r_in_gg(x0, x1)
U8_gg(x0)
U4_gg(x0)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0)
U13_gg(x0, x1, x2)
U14_gg(x0)
U11_gg(x0)
U10_gg(x0)
U6_gg(x0, x1, x2)
U7_gg(x0)
U2_gg(x0, x1)
U3_gg(x0)
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
Q_IN_GG(X, Y) → U1_GG(X, Y, e_in_gg(X, Y))
Q_IN_GG(X, Y) → E_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
P_IN_GG(X, Y) → U5_GG(X, Y, e_in_gg(X, Y))
P_IN_GG(X, Y) → E_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
R_IN_GG(X, Y) → U8_GG(X, Y, e_in_gg(X, Y))
R_IN_GG(X, Y) → E_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → U4_GG(X, Y, p_in_gg(X, f(Y)))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
U9_GG(X, Y, q_out_gg(X, Y)) → U10_GG(X, Y, r_in_gg(X, Y))
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
R_IN_GG(f(X), f(X)) → U11_GG(X, t_in_gg(f(X), f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
T_IN_GG(X, Y) → U12_GG(X, Y, e_in_gg(X, Y))
T_IN_GG(X, Y) → E_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → U14_GG(X, Y, t_in_gg(X, Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → U7_GG(X, Y, p_in_gg(X, Y))
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U2_GG(X, p_out_gg(X, f(f(X)))) → U3_GG(X, q_in_gg(X, f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Q_IN_GG(X, Y) → U1_GG(X, Y, e_in_gg(X, Y))
Q_IN_GG(X, Y) → E_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
P_IN_GG(X, Y) → U5_GG(X, Y, e_in_gg(X, Y))
P_IN_GG(X, Y) → E_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
R_IN_GG(X, Y) → U8_GG(X, Y, e_in_gg(X, Y))
R_IN_GG(X, Y) → E_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → U4_GG(X, Y, p_in_gg(X, f(Y)))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
U9_GG(X, Y, q_out_gg(X, Y)) → U10_GG(X, Y, r_in_gg(X, Y))
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
R_IN_GG(f(X), f(X)) → U11_GG(X, t_in_gg(f(X), f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
T_IN_GG(X, Y) → U12_GG(X, Y, e_in_gg(X, Y))
T_IN_GG(X, Y) → E_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → U14_GG(X, Y, t_in_gg(X, Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → U7_GG(X, Y, p_in_gg(X, Y))
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U2_GG(X, p_out_gg(X, f(f(X)))) → U3_GG(X, q_in_gg(X, f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0, x1, x2)
p_in_gg(x0, x1)
U5_gg(x0, x1, x2)
r_in_gg(x0, x1)
U8_gg(x0, x1, x2)
U4_gg(x0, x1, x2)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U13_gg(x0, x1, x2)
U14_gg(x0, x1, x2)
U11_gg(x0, x1)
U10_gg(x0, x1, x2)
U6_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
U2_gg(x0, x1)
U3_gg(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
T_IN_GG(f(X), f(Y)) → U13_GG(X, Y, q_in_gg(f(X), f(Y)))
Used ordering: Polynomial interpretation [25]:
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
POL(P_IN_GG(x1, x2)) = x1
POL(Q_IN_GG(x1, x2)) = x1
POL(R_IN_GG(x1, x2)) = x1
POL(T_IN_GG(x1, x2)) = x1
POL(U10_gg(x1, x2, x3)) = 0
POL(U11_gg(x1, x2)) = 0
POL(U12_gg(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(U13_GG(x1, x2, x3)) = x1
POL(U13_gg(x1, x2, x3)) = 0
POL(U14_gg(x1, x2, x3)) = 0
POL(U1_gg(x1, x2, x3)) = x3
POL(U2_GG(x1, x2)) = x1
POL(U2_gg(x1, x2)) = 0
POL(U3_gg(x1, x2)) = 0
POL(U4_gg(x1, x2, x3)) = 0
POL(U5_gg(x1, x2, x3)) = 1 + x2 + x3
POL(U6_GG(x1, x2, x3)) = x1
POL(U6_gg(x1, x2, x3)) = 0
POL(U7_gg(x1, x2, x3)) = 0
POL(U8_gg(x1, x2, x3)) = x3
POL(U9_GG(x1, x2, x3)) = x1
POL(U9_gg(x1, x2, x3)) = 0
POL(a) = 0
POL(b) = 0
POL(e_in_gg(x1, x2)) = 0
POL(e_out_gg(x1, x2)) = 1 + x1 + x2
POL(f(x1)) = 1 + x1
POL(p_in_gg(x1, x2)) = 1 + x1 + x2
POL(p_out_gg(x1, x2)) = x2
POL(q_in_gg(x1, x2)) = 1 + x1 + x2
POL(q_out_gg(x1, x2)) = 0
POL(r_in_gg(x1, x2)) = 1 + x1 + x2
POL(r_out_gg(x1, x2)) = 0
POL(t_in_gg(x1, x2)) = 1 + x1 + x2
POL(t_out_gg(x1, x2)) = 1 + x1 + x2
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
U13_GG(X, Y, q_out_gg(f(X), f(Y))) → T_IN_GG(X, Y)
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0, x1, x2)
p_in_gg(x0, x1)
U5_gg(x0, x1, x2)
r_in_gg(x0, x1)
U8_gg(x0, x1, x2)
U4_gg(x0, x1, x2)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U13_gg(x0, x1, x2)
U14_gg(x0, x1, x2)
U11_gg(x0, x1)
U10_gg(x0, x1, x2)
U6_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
U2_gg(x0, x1)
U3_gg(x0, x1)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
T_IN_GG(f(X), f(Y)) → Q_IN_GG(f(X), f(Y))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0, x1, x2)
p_in_gg(x0, x1)
U5_gg(x0, x1, x2)
r_in_gg(x0, x1)
U8_gg(x0, x1, x2)
U4_gg(x0, x1, x2)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U13_gg(x0, x1, x2)
U14_gg(x0, x1, x2)
U11_gg(x0, x1)
U10_gg(x0, x1, x2)
U6_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
U2_gg(x0, x1)
U3_gg(x0, x1)
T_IN_GG(f(z0), f(z0)) → Q_IN_GG(f(z0), f(z0))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
R_IN_GG(X, f(Y)) → Q_IN_GG(X, Y)
U6_GG(X, Y, r_out_gg(X, f(Y))) → P_IN_GG(X, Y)
T_IN_GG(f(z0), f(z0)) → Q_IN_GG(f(z0), f(z0))
U9_GG(X, Y, q_out_gg(X, Y)) → R_IN_GG(X, Y)
Q_IN_GG(X, f(f(Y))) → P_IN_GG(X, f(Y))
Q_IN_GG(X, f(f(X))) → U2_GG(X, p_in_gg(X, f(f(X))))
Q_IN_GG(X, f(f(X))) → P_IN_GG(X, f(f(X)))
U2_GG(X, p_out_gg(X, f(f(X)))) → Q_IN_GG(X, f(X))
R_IN_GG(X, f(Y)) → U9_GG(X, Y, q_in_gg(X, Y))
R_IN_GG(f(X), f(X)) → T_IN_GG(f(X), f(X))
P_IN_GG(X, f(Y)) → R_IN_GG(X, f(Y))
P_IN_GG(X, f(Y)) → U6_GG(X, Y, r_in_gg(X, f(Y)))
q_in_gg(X, Y) → U1_gg(X, Y, e_in_gg(X, Y))
e_in_gg(a, b) → e_out_gg(a, b)
U1_gg(X, Y, e_out_gg(X, Y)) → q_out_gg(X, Y)
q_in_gg(X, f(f(X))) → U2_gg(X, p_in_gg(X, f(f(X))))
p_in_gg(X, Y) → U5_gg(X, Y, e_in_gg(X, Y))
U5_gg(X, Y, e_out_gg(X, Y)) → p_out_gg(X, Y)
p_in_gg(X, f(Y)) → U6_gg(X, Y, r_in_gg(X, f(Y)))
r_in_gg(X, Y) → U8_gg(X, Y, e_in_gg(X, Y))
U8_gg(X, Y, e_out_gg(X, Y)) → r_out_gg(X, Y)
r_in_gg(X, f(Y)) → U9_gg(X, Y, q_in_gg(X, Y))
q_in_gg(X, f(f(Y))) → U4_gg(X, Y, p_in_gg(X, f(Y)))
U4_gg(X, Y, p_out_gg(X, f(Y))) → q_out_gg(X, f(f(Y)))
U9_gg(X, Y, q_out_gg(X, Y)) → U10_gg(X, Y, r_in_gg(X, Y))
r_in_gg(f(X), f(X)) → U11_gg(X, t_in_gg(f(X), f(X)))
t_in_gg(X, Y) → U12_gg(X, Y, e_in_gg(X, Y))
U12_gg(X, Y, e_out_gg(X, Y)) → t_out_gg(X, Y)
t_in_gg(f(X), f(Y)) → U13_gg(X, Y, q_in_gg(f(X), f(Y)))
U13_gg(X, Y, q_out_gg(f(X), f(Y))) → U14_gg(X, Y, t_in_gg(X, Y))
U14_gg(X, Y, t_out_gg(X, Y)) → t_out_gg(f(X), f(Y))
U11_gg(X, t_out_gg(f(X), f(X))) → r_out_gg(f(X), f(X))
U10_gg(X, Y, r_out_gg(X, Y)) → r_out_gg(X, f(Y))
U6_gg(X, Y, r_out_gg(X, f(Y))) → U7_gg(X, Y, p_in_gg(X, Y))
U7_gg(X, Y, p_out_gg(X, Y)) → p_out_gg(X, f(Y))
U2_gg(X, p_out_gg(X, f(f(X)))) → U3_gg(X, q_in_gg(X, f(X)))
U3_gg(X, q_out_gg(X, f(X))) → q_out_gg(X, f(f(X)))
q_in_gg(x0, x1)
e_in_gg(x0, x1)
U1_gg(x0, x1, x2)
p_in_gg(x0, x1)
U5_gg(x0, x1, x2)
r_in_gg(x0, x1)
U8_gg(x0, x1, x2)
U4_gg(x0, x1, x2)
U9_gg(x0, x1, x2)
t_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U13_gg(x0, x1, x2)
U14_gg(x0, x1, x2)
U11_gg(x0, x1)
U10_gg(x0, x1, x2)
U6_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
U2_gg(x0, x1)
U3_gg(x0, x1)